人生は死ぬまでの暇つぶし  自然にその日を迎えるまで、サバイバル(健康・経済・社会情勢・天変地異・・・)  真実、真相、本質、一を知りたい

■ケムトレイル ~特許番号 US3899144:粉末飛行機雲の生成

ケムトレイル ~特許番号 US3899144:粉末飛行機雲の生成 より転載します。


ChemTrails ~Patent# US3899144:
Powder contrail generation

ケムトレイル ~特許番号 US3899144:

Powder contrail generation

Werle; Donald K. , Hillside, IL
Kasparas; Romas , Riverside, IL
Katz; Sidney , Chicago, IL
ヴェルレ; ドナルドK.、ヒルサイド、イリノイ州
カスパラス; イリノイ州リバーサイドのロマス
カッツ; シドニー、イリノイ州シカゴ

The United States of America as represented by the Secretary of the Navy, Washington, DC

Appplication #:
アプリケーショ ン番号:

Date of Issue:
Aug. 12, 1975 / July 22, 1974

Light scattering pigment powder particles, surface treated to minimize inparticle cohesive forces, are dispensed from a jet mill deagglomerator as separate single particles to produce a powder contrail having maximum visibility or radiation scattering ability for a given weight material.

What claim is:

1. Contrail generation apparatus for producing a powder contrail having maximum radiation scattering ability for a given weight material, comprising: a. an aerodynamic housing;
1. 所定の重量の材料に対して最大の放射線散乱能力を有する粉末飛行機雲を生成するための飛行機雲生成装置であって、 空力的ハウジングを備える。

b. a jet tube means passing through said housing, said tube means having an inlet at a forward end of said housing and an exhaust at a rearward end thereof;
b. 前記ハウジングを貫通する噴流管手段であって、前記ハウジングの前方端に入口を有し、その後方端に排気口を有する噴流管手段。

c. a powder storage means in said housing;
c. 前記ハウジング内に設けられた粉体貯蔵手段;

d. a deagglomeration means also in said housing; e. means connecting said powder storage means with said deagglomeration means for feeding radiation scattering powder from said powder storage means to said deagglomeration means;
d. 前記ハウジング内に設けられた脱凝集手段; e. 前記粉体貯蔵手段と前記脱凝集手段を接続し、放射線散乱粉体を前記粉体貯蔵手段から前記脱凝集手段に供給する手段;

f. the output of said deagglomeration means dispensing directly into said jet tube means for exhausting deagglomerated powder particles into the atmosphere to form a contrail; and h. means for controlling the flow of said powder from said storage means to said deagglomeration means.
f. 前記脱凝集手段の出力は、脱凝集した粉体粒子を大気中に排出して飛行機雲を形成するための前記噴射管手段に直接分配されること;および h. 前記貯蔵手段から前記脱凝集手段への前記粉体の流れを制御する手段。

2. Apparatus as in claim 1 wherein said jet tube means is a ram air jet tube.
2. 前記噴出管手段がラムエア噴出管であることを特徴とする請求項1に記載の装置。

3. Apparatus as in claim 1 wherein an upstream deflector baffle is provided at the output of said deagglomeration means into said jet tube means to produce a venturi effect for minimizing back pressure on said powder feeding means.
3. 請求項1に記載の装置において、前記脱凝集手段の前記噴出管手段への出力部に上流側デフレクタバッフルを設け、前記粉体供給手段への背圧を最小化するベンチュリ効果を生じさせることを特徴とする装置。

4. Apparatus as in claim 1 wherein said deagglomerator means comprises: a. means for subjecting powder particles from said powder storage means to a hammering action to aerate and precondition the powder; and b. a jet mill means to further deagglomerate the powder into separate particles.
4. 請求項1に記載の装置において、前記脱凝集装置は;a. 前記粉体貯蔵手段からの粉体粒子にハンマリング作用を与え、粉体に空気を含ませて前処理する手段と;b. 粉体をさらに脱凝集させて別々の粒子にするジェットミル手段とからなることを特徴とする装置。

5. Apparatus as in claim 4 wherein pressurized gas means is provided for operating said deagglomeration means.
5. 前記脱凝集手段を作動させるために加圧ガス手段が設けられていることを特徴とする請求項4に記載の装置。

6. Apparatus as in claim 1 wherein said radiation scattering powder particles are titanium dioxide pigment having a median particle size of about 0.3 microns.
6. 請求項1に記載の装置であって、前記放射線散乱粉末粒子が、約0.3ミクロンの中央粒径を有する二酸化チタン顔料であることを特徴とする装置。

7. Apparatus as in claim 1 wherein said radiation scattering powder particles have a coating of extremely fine hydrophobic colloidal silica thereon to minimize interparticle cohesive forces.
7. 前記放射線散乱粉体粒子が、粒子間の凝集力を最小化するために、極めて微細な疎水性コロイダルシリカのコーティングを有している、請求項1に記載の装置。

8. Apparatus as in claim 1 wherein the formulation of said powder consists of 85% by weight of TiO2 pigment of approximately 0.3 micron media particle size, 10% by weight of colloidal silica of 0.007 micron primary particle size, and 5% by weight of silica gel having an average particle size of 4.5 microns.
8. 前記粉末の配合が、媒体粒子径約0.3ミクロンのTiO2顔料85重量%、一次粒子径0.007ミクロンのコロイダルシリカ10重量%、平均粒子径4.5ミクロンのシリカゲル5重量%で構成されている請求項1に記載の装置。

9. The method of producing a light radiation scattering contrail, comprising:
9. を含む、光放射散乱飛行機雲を生成する方法である:

a. surface treating light scattering powder particles to minimize interparticle cohesive forces;
a. 光散乱粉体粒子を表面処理して、粒子間の凝集力を最小化すること;

b. deagglomerating said powder particles in two stages prior to dispensing into a jet tube by subjecting said powder particles to a hammering action in the first stage to aerate and precondition the powder, and by passing said powder through a jet mill in the second stage to further deagglomerate the powder;
b. 噴射管に吐出する前に、2段階で前記粉体粒子を脱凝集させる工程であって、第1段階では前記粉体粒子にハンマリング作用を与えて前記粉体に空気を含ませて前処理を行い、第2段階では前記粉体をジェットミルに通して前記粉体をさらに脱凝集させる工程;

c. dispensing the deagglomerated powder from the jet mill directly into a jet tube for exhausting said powder into the atmosphere, thus forming a contrail.
c. 前記ジェットミルで脱凝集された粉体を、大気中に排出するためのジェット管に直接投入して、飛行機雲を形成すること。

10. A method as in claim 9 wherein said light scattering powder particles is titanium dioxide pigment.
10. 前記光散乱性粉体粒子が二酸化チタン顔料である、請求項9に記載の方法。

11. A method as in claim 9 wherein said powder particles are treated with a coating of extremely fine hydrophobic colloidal silica to minimize interparticle cohesive forces.
11. 前記粉体粒子を極めて微細な疎水性コロイダルシリカのコーティングで処理し、粒子間の凝集力を最小化する、請求項9に記載の方法。

12. A method as in claim 11 wherein said treated powder particles are further protected with a silica gel powder.
12. 前記処理された粉体粒子が、さらにシリカゲル粉体で保護されている請求項11に記載の方法。


The powder contail generator in pod 10, shown in FIG. 1, is provided with a powder feed hopper 12 positioned in the center section of the pod and which feeds a powder 13 to a deagglomerator 14 by means of screw conveyors 16 across the bottom of the hopper. The deagglomerator 14 produces two stages of action. In the first stage of deagglomeration, a shaft 18 having projecting radial rods 19 in compartment 20 is rotated by an air motor 21, or other suitable drive means. The shaft 18 is rotated at about 10,000 rpm, for example. As powder 13 descends through the first stage compartment 20 of the deagglomeration chamber, the hammering action of rotating rods 19 serves to aerate and precondition the powder before the second stage of deagglomeration takes place in the jet mill section 22. In the jet mill 22, a plurality of radial jets 24 (e.g., six 0.050 inch diamter radial jets) direct nitrogen gas (at e.g., 120 psig) inward to provide energy for further deagglomeration of the powder. The N2, or other suitable gas, is provided from storage tanks 25 and 26, for example, in the pod.

The jet mill 22 operates in a similar manner to commercial fluid energy mills except that there is no provision for recirculation of oversize particles. Tests with the deagglomerator show that at a feed rate of approximately 11/2 lb/min, treated titanium dioxide powder pigment is effectively dispersed as single particles with very few agglomerates evident.
ジェットミル22は、オーバーサイズの粒子を再循環させる機能がないことを除けば、市販の流体エネルギーミルと同様の方法で動作します。デアグロメレーターを使ったテストでは、約11/2 lb/minの供給速度で、処理された二酸化チタン粉末顔料が単一の粒子として効果的に分散され、ほとんど凝集物が見られなかった。

The nitrogen gas stored in cylinder tanks 25 and 26 is charged to 1800 psig, for example. Two stages of pressure reduction, for example, by pressure reduction valves 28 and 29, bring the final delivery pressure at the radial jets 24 and to the air motor 21 to approximately 120 psig. A solenoid valve 30 on the 120 psig line is connected in parallel with the electric motor 32 which operates the powder feeder screws 16 for simultaneous starting and running of the powder feed, the air motor and the jet mill deagglomerator.

Air enters ram air tube 34 at its entrance 35 and the exhaust from the jet mill deagglomerator passes directly into the ram air tube. At the deagglomerator exhaust 36 into ram air tube 34, an upstream deflector baffle 38 produces a venturi effect which minimizes back pressure on the powder feed system. The powder is then jetted from the exhaust end 40 of the ram air tube to produce a contrail. A pressure equalization tube, not shown, can be used to connect the top of the closed hopper 12 to the deagglomeration chamber 14. A butterfly valve could be provided at the powder hopper outlet 39 to completely isolate and seal off the powder supply when not in use. Powder 13 could then be stored in hopper 12 for several weeks, without danger of picking up excessive moisture, and still be adequately dispensed.

Preparation of the light scatter powder 13 is of a critical importance to production of a powder "contrail" having maximum visibility for a given weight of material. It is essential that the pigment powder particles be dispensed as separate single particles rather than as agglomerates of two or more particles. The powder treatment produces the most easily dispersed powder through the use of surface treatments which minimize interparticle cohesive forces.

Titanium dioxide pigment was selected as the primary light scattering material because of its highly efficient light scattering ability and commercially available pigment grades. Titanium dioxide pigment (e.g., DuPont R--931) with a median particle size of about 0.3µ has a high bulk density and is not readily aerosolizable as a submicron cloud without the consumption of a large amount of deagglomeration energy. In order to reduce the energy requirement for deagglomeration, the TiO2 powder is specially treated with a hydrophobic colloidal silica which coats and separates the individual TiO2 pigment particles. The extremely fine particulate nature (0.007µ primary particle size) of Cobot S--101 Silanox grade, for example, of colloidal silica minimizes the amount needed to coat and separate the TiO2 particles, and the hydrophobic surface minimizes the affinity of the powder for absorbtion of moisture from the atmosphere. Adsorbed moisture in powders causes liquid bridges at interparticle contacts and it then becomes necessary to overcome the adsorbed-liquid surface tension forces as well as the weaker Van der Waals' forces before the particles can be separated.
二酸化チタン顔料は、その高効率な光散乱能力と、市販されている顔料グレードから、主要な光散乱材料として選択された。中央粒径が約0.3μの二酸化チタン顔料(例えば、DuPont R--931)は、嵩密度が高く、多量のデアグロメレーションエネルギーを消費しなければサブミクロンの雲として容易にエアロゾル化できない。そこで、TiO2粉末を疎水性のコロイダルシリカで特殊処理し、TiO2顔料の各粒子をコーティングして分離することで、脱凝集に必要なエネルギーを低減しています。Cobot S--101 Silanoxグレードのコロイダルシリカは、一次粒子径が0.007μと非常に細かいため、TiO2粒子の被覆・分離に必要な量を最小限に抑えることができ、また、疎水性の表面により、大気中の水分を吸収する親和性を最小限に抑えることができます。粉体に吸着した水分は、粒子間の接触部に液体ブリッジを引き起こし、粒子を分離するためには、吸着した液体の表面張力と、より弱いファンデルワールス力を克服する必要があります。

The Silanox treated titanium dioxide pigment is further protected from the deleterious effects of adsorbed moisture by incorporation of silica gel. The silica gel preferentially adsorbs water vapor that the powder may be exposed to after drying and before use. The silica gel used is a powder product, such as Syloid 65 from the W. R Grace and Co., Davison Chemical Division, and has an average particle size about 4.5µ and a large capacity for moisture at low humidities.
シラノックス処理された酸化チタン顔料は、シリカゲルを組み込むことで、吸着した水分の悪影響からさらに保護される。シリカゲルは、乾燥後や使用前に粉体が曝される可能性のある水蒸気を優先的に吸着する。使用するシリカゲルは、W.R.Grace and Co., Davison Chemical DivisionのSyloid 65のような粉末製品で、平均粒子径が約4.5μで、低湿度での水分に対する容量が大きい。

A typical powder composition used is shown in Table 1. This formulation was blended intimately with a Patterson-Kelley Co. twin shell dry LB-model LB--2161 with intensifier. Batches of 1500 g were blended for 15 min. each and packaged in 5-lb cans. The bulk density of the blended powder is 0.22 g/cc. Since deagglomeration is facilitated by having the powder bone dry, the powder should be predried before sealing the cans. In view of long periods (e.g., about 4 months) between powder preparation and use it is found preferable to spread the powder in a thin layer in an open container and place in a 400°F over two days before planned usage. The powder is removed and placed in the hopper about 2 hours before use.

Table 1 ______________________________________ CONTRAIL POWDER FORMULATION Ingredient % by Weight
表1______________________ 飛行機雲・粉末製剤 成分 重量比

______________________________________ TiO2 (e.g., DuPont R-931) 85 median particle size 0.3µ Colloidal Silica (e.g., Cabot S-101 Silanox) 10 primary particle size 0.007µ Silica gel (e.g., Syloid 65) 5 average particle size 4.5µ
______________________TiO2(例:DuPont R-931) 85 中央値粒子径 0.3μ コロイダルシリカ(例:Cabot S-101 Silanox) 10 一次粒子径 0.007μ シリカゲル(例:Syloid 65) 5 平均粒子径 4.5μ

______________________________________ Other type powder compositions can also be used with the apparatus described herein. For example, various powder particles which reflect electromagnetic radiation can be dispensed as a chaff or the like from the contrail generator.

Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.


The present invention relates to method and apparatus for contrail generation and the like.

An earlier known method in use for contrail generation involves oil smoke trails produced by injecting liquid oil directly into the hot jet exhaust of an aircraft target vehicle. The oil vaporizes and recondenses being the aircraft producing a brilliant white trail. Oil smoke trail production requires a minimum of equipment; and, the material is low in cost and readily available. However, oil smoke requires a heat source to vaporize the liquid oil and not all aircraft target vehicles, notably towed targets, have such a heat source. Also, at altitudes above about 25,000 feet oil smoke visibility degrades rapidly.


The present invention is for a powder generator requiring no heat source to emit a "contrail" with sufficient visibility to aid in visual acquisition of an aircraft target vehicle and the like. The term "contrail" was adopted for convenience in identifying the visible powder trail of this invention. Aircraft target vehicles are used to simulate aerial threats for missile tests and often fly at altitudes between 5,000 and 20,000 feet at speeds of 300 and 400 knots or more. The present invention is also suitable for use in other aircraft vehicles to generate contrails or reflective screens for any desired purpose.

The powder contail generator is normally carried on an aircraft in a pod containing a ram air tube and powder feed hopper. Powder particles, surface treated to minimize interparticle cohesive forces are fed from the hopper to a deagglomerator and then to the ram air tube for dispensing as separate single particles to produce a contrail having maximum visibility for a given weight material.

Other object, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawing.








こんにちは ♪
漢方と生薬の匂いが大好き ♪
花の80代 ♂、


ウイルスは怖くない  (24)
ワクチン・ウイルス (114)
新型コロナウイルスとは (40)
新型コロナウイルス(2019-nCoV) (327)
新型コロナワクチン:仕組み&副反応 (236)
2019-nCoVの特効薬 (50)
予防接種を拒否する方法 (17)
下痢・ノロウイルス (11)
狂犬病 (6)
MMS (2)
刺青 (1)
梅毒 (4)
イヤシロチ化 (2)
重曹 (2)
かゆみ (1)
ソマチッド・ケイ素・テラヘルツ鉱石 (20)
子宮頸ガンワクチン&添加物 (56)
カンジダ症:リーキーガット症候群、癌 (20)
がん、ガン、癌、悪性腫瘍 (61)
ヒート・ショック・プロテイン (1)
ラプンツェル症候群 (1)
パーキンソン病 (1)
ミトコンドリア (3)
エボラ出血熱 (45)
多発性硬化症 (1)
光触媒 (1)
元素転換 (1)
抗生物質 (4)
除草剤 (4)
舌診 (1)
火傷 (5)
睡眠 (31)
歯 (28)
虫垂炎 (2)
骨粗鬆症 (1)
口内炎 (1)
歯周病 (4)
片頭痛 (5)
耳鳴り (3)
毛染め (4)
甲状腺 (0)
ADHD (9)
自閉症 (8)
砂糖類 (6)
コーヒー (20)
タバコ (3)
胆石 (2)
肺 (4)
死 (73)
不食 (4)
断食 (6)
美容 (4)
風邪 (6)
輸血 (4)
蜂毒 (14)
日本蜜蜂 (47)
蜂蜜の効用 (8)
月経は無いのが自然 (4)
更年期症状 (3)
母子手帳 (2)
フッ素 (7)
漢方薬 (23)
静脈瘤 (1)
白内障 (2)
花粉症 (7)
重金属毒 (2)
玄米菜食 (3)
心臓疾患 (4)
生卵は駄目 (3)
細胞の脳 (20)
腸内細菌 (4)
自己免疫疾患 (8)
腸:免疫システム (22)
第7の感覚・リンパ系・免疫系 (3)
ピロリ菌 (5)
多剤耐性菌 (11)
風味増強剤 (1)
キシリトール (1)
茶カテキン (3)
食品添加物 (4)
遺伝子組換え (32)
トランス脂肪酸 (2)
アスパルテーム (4)
メープルシロップ (1)
認知症&ケトン体 (35)
DNA (128)
ストレス (2)
コレステロール (1)
分子栄養学三石理論 (105)
分子栄養学(三石理論)入門編 (27)
分子栄養学(三石理論)上級編 (109)
分子栄養学(三石理論)コラム編 (18)
三石理論:医学常識はウソだらけ (1)
分子栄養学(三石理論)栄養素編 (21)
分子栄養学(三石理論):マイコプラズマ肺炎 (4)
医療・薬剤の実体(まとめ・保存版) (54)
医療・薬剤の実体(放射線) (1)
病気はクスリで作られる (7)
医療・薬剤の実体(がん) (2)
鍼灸指圧 (7)
医療・薬剤の実体 (912)
政治・経済・社会 (815)
文明800年周期 (1)
覚せい剤・麻薬 (21)
大麻 (24)
言論封殺 (0)
不正選挙 (15)
乳酸菌(豆乳ヨーグルト) (13)
グルンバ・乳酸菌軍団 (198)
飯山さん(日本仙人道) (0)
飯山一郎 保存版 (9)
飯山一郎さん (244)
乳酸菌同盟 (16)
乳酸菌 (30)
黄金の金玉団 (46)
nueqさん (2929)
達人さん (19)
宝石 (133)
写真 (143)
宇宙 (296)
物理 (68)
数学 (9)
太陽系 (26)
電磁波 (104)
宇宙全史 (24)
リザムの宇宙 (36)
銀河ネットワーク情報 (9)
その木に成って55さん (55)
シドニーおちんさん (3)
写真&未来の変え方 (22)
シドニーおちんの地図のある旅 (12)
意識を集中すると何かが起こる (3862)
飯山さん『放射性セシウムの無害化』 (3)
放射線レベルを1/10に操作 (4)
不思議な茨城県北部地震 (5)
原発再稼動&新設反対 (267)
ガイガーカウンター (4)
モルジェロンズ病&ケムトレイル (16)
ケムトレイル観察紀行(写真) (34)
ケムトレイル・気象操作 (309)
ケムトレイル保存版 (87)
HAARP (41)
サバイバル(術編) (228)
放射能「ぶらぶら病」 (5)
放射能被曝による鼻血 (46)
ホルミシス効果(放射能) (1)
放射能からのサバイバル (336)
放射能からのサバイバル 保存版 (20)
分子栄養学(三石理論)放射性物質対策 (1)
サバイバル「三脈の法・眼脈の法」 (9)
八ッ場は毒ヒ素ダム (1)
シオンの議定書 (2)
お金の仕組み (12)
ネットは危険 (209)
日本国支配 (26)
大東亜戦争 (1)
ノーベル賞 (1)
STAP細胞 (137)
ビルゲイツ 軽井沢別荘 (6)
フルベッキ写真 (0)
老子「道徳経」 (4)
奥の院:保存版 (55)
奥の院 (68)
バランサー:工作員 (11)
日月神示~奥の院 (4)
ユダヤと世界の歴史 (7)
会社化で支配 (28)
エンパス (1)
韓国関連 (0)
日本自立 (19)
偽旗作戦 (2)
集団ストーカー (89)
経済 (115)
間違い (18)
アヌンナキ (4)
地球なんでも鑑定団 (12)
温暖化:原発温排水 (5)
台風15号 (34)
NBBさん (2)
未分類 (5073)


独りファシズム Ver.0.3






                         悪がきboy's ベル&タイガー